Everything is Connected

Concentration in Gauss Space

Word count: 865Reading time: 5 min
2019/07/25 Share

This article aims to solve an exercise in High-Dimensional Probability (Page 112, Exercise 5.2.3).

Gaussian Isoperimetric Inequality

Let \(\mathbb R^n\) equip with the Gauss measure \(\gamma_n\): \[ \gamma_n(E)=\frac{1}{(2\pi)^{n/2}}\int_E\exp\{-\frac{\|x\|^2}{2}\}{\rm d}x \] where \(E\subseteq \mathbb R^n\) is a Borel set. Then \((\mathbb R^n,\gamma_n)\) is called Gauss space. Gaussian isoperimetric inequality states that, among all the measurable sets with given volume, half spaces have the smallest perimeter. Moreover, define the Minkowski sum \[ A+B=\{a+b\in\mathbb R^n,a\in A,b\in B\}. \] We have the following statement.

Theorem. Let \(\epsilon>0\). Among all sets \(A\subseteq \mathbb R^n\) with fixed Gauss measure \(\gamma_n(A)\), the half spaces minimizes the Gauss measure \(\gamma_n(A+B^n(\epsilon))\), where \(B^n(\epsilon)\) is a solid ball centered at origin with radius \(\epsilon\).

See here for a general definition of Gauss space and proof of the above theorem. See this paper for a friendly introduction of Gaussian isoperimetric inequality.

Concentration

We want to prove the following concentration inequality in Gauss spaces.

Theorem. Let \(X\sim\mathcal N(0,I_n)\) be a Gauss variable. \(f:\mathbb R^n\to \mathbb R\) is a Lipschitz function with respect to the standard Euclidean metric. Then \(f(X)-\mathbb Ef(X)\) is a sub-gaussian variable. That is, \[ \mathbb P(|f(X)-\mathbb Ef(X)|>t)\le \exp(-ct^2),\forall t>0, \] where \(c>0\) is a constant.

First we prove a blow-up lemma using isoperimetric inequality.

Lemma. Let \(A\) be a subset in Gauss space. If \(\gamma_n(A)>1/2\), then for any \(t>0\), \(\gamma_n(A+B^n(t))\ge1-\frac{1}{2}\exp\{-t^2/2\}\).

Proof of Lemma. Let \(H=\{x\in\mathbb R^n:x_1\le 0\}\) be the half space. By assumption, \(\gamma_n(A)>\gamma_n(H)\). The Gaussian isoperimetric inequality implies \[ \gamma_n(A+B^n(t))>\gamma_n(H+B^n(t)). \] Note that \(H+B^n(t)=\{x\in\mathbb R_n:x_1\le t\}\) is also a half space. Direct computation shows that \[ \begin{aligned} \gamma_n(H+B^n(t))&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^t\exp\{-\frac{x_1^2}{2}\}{\rm d}x_1\\ &=1-\frac{1}{\sqrt{2\pi}}\int_t^{\infty}\exp\{-\frac{x_1^2}{2}\}{\rm d}x_1\\ &=1-\frac{1}{\sqrt{2\pi}}\int_0^{\infty}\exp\{-\frac{(t+y)^2}{2}\}{\rm d}y\\ &\ge 1-\frac{1}{\sqrt{2\pi}}\int_0^{\infty}\exp\{-\frac{t^2}{2}\}\exp\{-\frac{y^2}{2}\}{\rm d}y\\ &=1-\frac{1}{2}\exp\{-\frac{t^2}{2}\}. \end{aligned} \] Therefore, we have \(\gamma_n(A+B^n(t))\ge1-\frac{1}{2}\exp\{-t^2/2\}\). \(\blacksquare\)

This blow-up lemma enables us to prove the main theorem.

Proof of Main Theorem. Without loss of generality, we assume \(|f(x)-f(y)|\le \|x-y\|\). Let \(m\) denote the median of \(f(X)\). That is, \[ \mathbb P(f(X)\le m)\ge 1/2,\mathbb P(f(X)\ge m)\ge 1/2. \] Consider the level set \(A=f^{-1}((-\infty,m])\). Note that \(\mathbb P(f(X)\le m)=\gamma_n(A)\ge 1/2\). By blow-up lemma, \(\gamma_n(A+B^n(t))\ge 1-1/2\exp\{-t^2/2\}\). On the other hand, if $xA+B^n(t) $, there exists \(y\in A\) such that \(\|x-y\|\le t\). Therefore, \[ f(x)\le \|x-y\|+f(y)=f(y)+t. \] This implies \(\mathbb P(f(X)\le m+t)\ge \gamma_n(A+B^n(t))\), i.e. \(\mathbb P(f(X)-m>t)\le 1/2\exp\{-t^2/2\}\).

Replace \(f\) with \(-f\). We can obtain a similar inequality as \(\mathbb P(f(X)-m<-t)\le 1/2\exp\{-t^2/2\}\). Hence, \[ \mathbb P(|f(X)-m|>t)\le \exp\{-t^2/2\}, \] which implies \(f(X)-m\) is a sub-gaussian variable. Note that \(\mathbb E(f(X)-m)=\mathbb E(f(X))-m\). We know that \(f(X)-\mathbb Ef(X)\) is a sub-gaussian variable. \(\blacksquare\)

Applications

Let us take \(f:\mathbb R^n\to\mathbb R\) to be the norm \(\|\cdot\|\). Let \(X\sim\mathcal N(0,I_n)\) be a Gauss variable. Direct computation shows that \[ \begin{aligned} \mathbb Ef(X)&=\mathbb E\|X\|=\frac{1}{(2\pi)^{n/2}}\int \|x\|\exp\{-\frac{\|x\|^2}{2}\}{\rm d}x\\ &=\frac{1}{(2\pi)^{n/2}}\int_0^{\infty}\rho\exp\{-\rho^2/2\}{\rm d}\rho\int_{S^{n-1}(\rho)}{\rm d}\sigma\\ &=\frac{1}{(2\pi)^{n/2}}\times\frac{n\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}\times 2^{(n-1)/2}\Gamma(\frac{n+1}{2})\\ &=\frac{n}{\sqrt{2}}\times\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n+2}{2})}. \end{aligned} \] By Stirling's formula, the expectation is about \(\sqrt{n}\) when \(n\) is large. This shows that in high dimensions, the points concentrate in a sphere of radius \(\sqrt{n}\).

CATALOG
  1. 1. Gaussian Isoperimetric Inequality
  2. 2. Concentration
  3. 3. Applications